

VOI-M7 智能语音处理模组

模组规格书

(V2.00)

2020年9月18日

● 版权所有 © 北京探境科技有限公司 2020。保留一切权利。 非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或 全部,并不得以任何形式传播。

● 商标声明

探境科技

INTENGINE 探境科技和其他探境商标均为北京探境科技有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

● 注意

您购买的产品、服务或特性等应受北京探境科技有限公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,探境科技有限公司对本文档内容不做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

● 读者对象

本文档主要适用于以下工程师:

- ▶ 硬件工程师
- ▶ 技术支持工程师
- > 软件开发工程师

● 联系方式

北京探境科技有限公司

地址:北京市朝阳区望京宏泰西街博泰大厦 1503 室 邮编: 100102

网址: http://www.intenginetech.cn/index.htm

目 录

1.	VOI-M7 智能语音处理模组概述 1
1.1.	VOI611 智能语音处理芯片1
1.2.	VOI-M7 智能语音处理模组1
2.	VOI-M7 模组功能特点 2
	VOI-M7 模组示意图 3
4.	VOI-M7 模组接口定义 4
	VOI-M7 模组接口引脚定义4
	VOI-M7 模组接口引脚功能描述5
4.3.	VOI-M7 模组物理尺寸6
5.	VOI-M7 模组电气特性 ······· 7
6.	VOI-M7 模组应用建议8
6.1.	UART接口8
6.2.	麦克风选型8
6.3.	驻极体麦克风参考选型8
7.	VOI-M7 模组应用参考电路 9

图目录

图 3-1	模组示意图
图 4-1	
图 4-2	
图 7-1	
	*03
	表目录
主 1 1	模组接口引脚功能描述5
	模块基本电气特性
	麦克风推荐选型表8
₹ 0-1	文尤八评行也生化

1. VOI-M7 智能语音处理模组概述

1.1. VOI611 智能语音处理芯片

Voitist 611(简称 VOI611)是一颗针对嵌入式产品的深度学习语音识别芯片, 内置神经网络硬件加速模块 NPU,标准 ARM 处理器 Cortex-M3,集成多种控制 和通信接口。该芯片可以运行多种神经网络,在有噪声干扰的近场和远场情况下, 支持离线语音命令词识别。用户可以在设备不联网的情况下,通过说出简单命令 词的方式,有效控制目标电器设备,执行既定的操作行为。

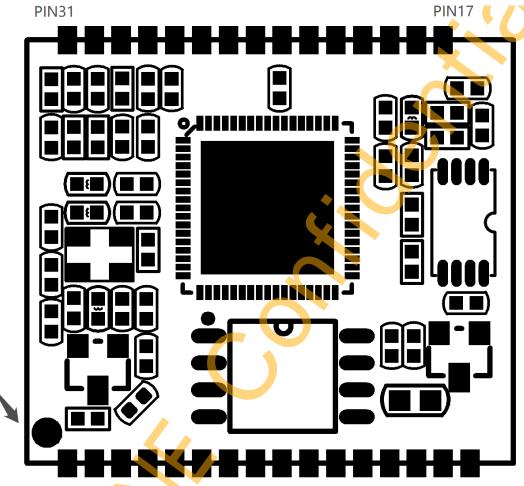
1.2. VOI-M7 智能语音处理模组

VOI-M7 模组是基于 VOI611 语音识别芯片设计的用于智能语音处理的集成模块,模块上包括 VOI611 主芯片、FLASH 存储芯片、晶振和电源芯片(LDO),对外接口为 31 脚邮票孔形式。

VOI-M7 模组用于基本的智能语音处理,功能完备,接口完整,非常适合以贴装模组的形式与电子设备主板进行配合,提供离线语音识别与控制功能。

VOI-M7 模组的主要适用场景有:

- 智能家电
- 智能音箱
- 智能插座
- 智能车载设备


2. VOI-M7 模组功能特点

VOI-M7 智能语音处理模组具有以下主要特点:

- 接口简洁: 31 脚邮票孔接口,管脚间距 1.27mm
- 供电简单: 只需单路 5V 电源输入
- 外设接口丰富:
 - 双路模拟麦克风输入接口
 - 单路数字麦克风输入接口
 - 单路扬声器驱动输出接口(Max:4ohm/3W @5V/1A)
 - 两路 UART 接口
 - 一路 SPI 接口
 - 一路 I2C 接口
 - 一路 IIS 接口
 - 四路 PWM 输出接口(同时复用为 JATG 调试接口)
 - 16 个 GPIO 接口(全部与上述接口复用, IIS 除外)
- 固件升级:可通过 UART/JLINK 接口进行在线升级
- 尺寸小: 20×23×2.6 毫米
- 低功耗: 典型工作状态功耗 < 400mW @ 5V 芯片工作状态功耗 < 200mW @ 3.3V

3. VOI-M7 模组示意图

模组实物示意图及主要组件说明参见图 3-1。

PIN1 PIN16

图 3-1 模组示意图

4. VOI-M7 模组接口定义

4.1. VOI-M7 模组接口引脚定义

模组接口引脚定义参见图 4-1。

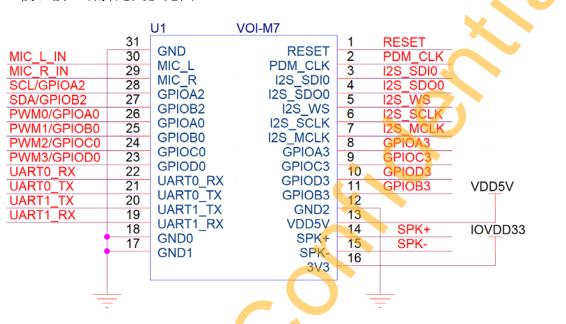


图 4-1 模组接口引脚定义图

4.2. VOI-M7 模组接口引脚功能描述

表 4-1 模组接口引脚功能描述

1	DECET		
	RESET	-	模块复位信号,低电平复位
2	PDM_CLK/GPIOC2	Ю	PDM 时钟线 或 GPIO C2 (内部下拉)
3	PDM_DATA/IIS_SDI/GPIOD2	Ю	PDM_DATA 或 IIS 数据输入 或 GPIO D2 (内部下拉)
4	IIS_SDO	0	IIS 数据输出(内部下拉)
5	IIS_WS	0	IIS 声道选择(内部下拉)
6	IIS_SCLK	0	IIS 串行时钟(内部下拉)
7	IIS_MCLK	0	IIS 系统时钟(内部下拉)
8	MSPI_SCLK/GPIOA3	Ю	SPI_SCLK 或 GPIO A3(内部下拉)
9	MSPI_SDO/GPIOC3	Ю	SPI_SDO 或 GPIO C3(内部下拉)
10	MSPI_SDI/GPIOD3	0	SPI_SDI 或 GPIO D3(内部下拉)
11	MSPI_CSN/GPIOB3	Ю	SPI_CSN 或 GPIO B3(内部上拉) (与模块 PA 芯片 EN 脚复用)
12	GND	G	电源地
13	VDD5V	РО	5V 电源输入
14	SPK+	Ю	扬声器正端
15	SPK-	10	扬声器负端
16	3V3	PO	模块 3.3V 电压(对外输出<5mA)
17	GND	G	电源地
18	GND	G	电源地
19	UART1_RX/GPIOD1	Ю	UART1 RX 或 GPIO D1 (内部上拉)
20	UART1_TX/GPIOC1	Ю	UART1 TX 或 GPIO C1(内部上拉)
21	UART0_TX/GPIOA1	Ю	UART0 TX 或 GPIO A1 (内部上拉)
22	UART0_RX/GPIOB1	Ю	UARTO RX 或 GPIO B1 (内部上拉)
23	JTAG_TDO/PWM3/GPIOD0	Ю	JTAG_TDO 或 PWM3 或 GPIO D0 (内部下拉)
24	JTAG_TDI/PWM2/GPIOC0	Ю	JTAG_TDI 或 PWM2 或 GPIO CO(内部下拉)
25	JTAG_TMS/PWM1/GPIOB0	Ю	右声道麦克风输入 JTAG_TMS 或PWM1或 GPIO BO(内部下拉)
26	JTAG_TCK/PWM0/GPIOA0	Ю	JTAG_TCK 或 PWM0 或 GPIO A0 (内部下拉)
27	MI2C_SDA/GPIOB2	Ю	IIC 接口数据线 或 GPIO B2(内部上拉)
28	MI2C_SCL/GPIOA2	Ю	IIC 接口时钟线 或 GPIO A2(内部上拉)
29	MIC_R_IN	Al	右声道麦克风输入
30	MIC_L_IN	Al	左声道麦克风输入
			· · · · · · · · · · · · · · · · · · ·

4.3. VOI-M7 模组物理尺寸

模组接口物理尺寸信息参见图 4-2。

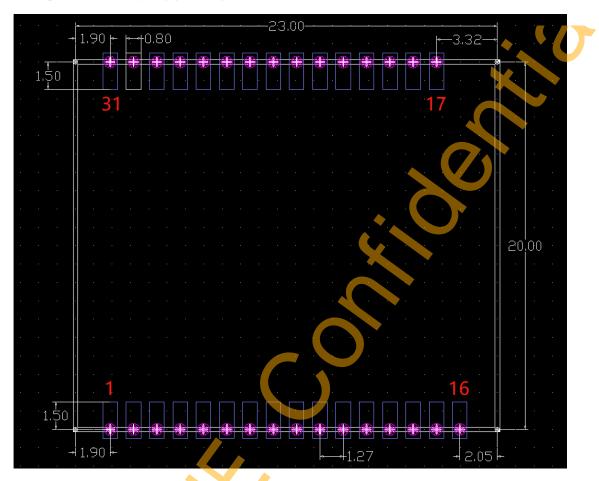


图 4-2 模组物理尺寸图-单位 mm

5. VOI-M7 模组电气特性

推荐运行条件下的电气特性参数如下表所示:

参数	最小值	推荐值	最大值	纹波
电源电压	4.8 V	5 V	5.2 V	<100mV
3.3V 电压	3.2V	3.3V	3.4V	<50mV
IO 电压	3.0V	3.3V	3.6V	
外部 3.3V 带载能力	100mA	200mA	-	V.)
外部 5V 带载能力		1 A		
模块 ASR 状态功耗			<500mW	-

表 5-1 模块基本电气特性

注 1: 典型工作状态,是指在使用典型电压值(5V)供电的情况下,在单麦克风工作模式下进行语音识别工作; 带喇叭播报功能时, 5V 供电能力需根据喇叭负载大小相应增大。

注 2: 模块 3.3V 管脚 16 可用于模块供电输入,在使用 5V 外部电源作为模块主要供电时,管脚 16 不需外接 3.3V,并且该管脚对外输出供电电流不可超过 5mA;使用外部 3.3V 作为模块的主要供电时,默认禁止使用模块的 PIN14 和 PIN15 去驱动扬声器 (3.3V 低于音频功放电路的工作电压);

注 3: 本模块采用小功率 LDO 器件 (250mW) 进行电压转换为 VOI611 主芯片供电,使用该模块时,请务必保证模块处于语音识别状态时(无喇叭播报)的功耗小于 500mW@5V,即语音识别状态时的模块 5V 供电电流不超过 100mA。

注 4: 若模块的外部供电电源带载能力不足,存在电压跌落的风险时,建议在模块 3.3V 与 RESER 管脚增加电源监控芯片,以保证电源掉电后系统能正常工作。

6. VOI-M7 模组应用建议

6.1. UART 接口

本模组支持通过 UARTO 接口(管脚 21、22)在线升级固件,产品设计时的通信协议功能接口建议使用 UART1。

在正常工作模式下不使用 UARTO 接口,也建议引出模组的 UARTO 接口到连接器或预留测试点,以方便固件升级更新。

6.2. 麦克风选型

如果选择驻极体麦克风,请注意:

- 麦克风灵敏度: -38dB~-28dB
- 信噪比 >= 60dB, 推荐 >= 65 dB

6.3. 驻极体麦克风参考选型

表 6-1 麦克风推荐选型表

厂商型号	厂商	灵敏度 (dB)	信噪比 (dB)	THD	方向性
JMO-627B-332K-10T320	捷力泰	-33+-2	60	1%@1kHz	全向
JMO-627B-322C-10TG92	捷力泰	-32+-2	70	1%@1kHz	全向
GMI6027L40S-2C32DB-1.25T-7033-RF68	赢海电子	-32+-3	68		全向

7. VOI-M7 模组应用参考电路

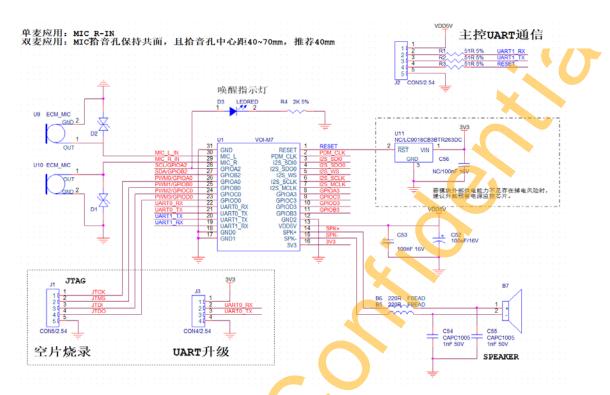


图 7-1 单麦/双麦基本应用参考原理图

